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Abstract. The paper analyzes how 3D dynamic geometry environments may be used to foster the exploration of 

multiple dimensions of 3D geometry. The notion of dimension is twofold: it refers, one the one hand to the dimension of 

a geometrical object, on the other hand to the multiple types of representation and expressions used in geometry. Two 

kinds of processes are involved in problem solving in geometry: iconic and non iconic visualization. The non iconic 

visualization consists in breaking down an object into parts of same or lower dimension. This cognitive process is 

critical for solving problems in geometry as very often the reasoning consists in establishing relationships between 

elements of the figure. However this process is not spontaneous and must be learned. 3D geometry is the source of new 

problems regarding iconic and non iconic visualization. Iconic visualization is not always reliable as it is in 2D 

geometry and non iconic visualization is more complex since it deals with a larger number of kinds of objects, from 

dimension 0 to dimension 3. The paper examines how 3D dynamic geometry environments may enlarge the iconic 

visualization and assist the non iconic visualization. 3D geometry computer environments may also offer a textual 

description linked to the dynamic diagram. The interplay between both representations not only facilitates the 

construction process of figures but also may be used to move from construction tasks to proof tasks. The example of 

Cabri 3D is used in the paper to illustrate the argument. 

 

1. Foreword 
At first glance, the notion of dimension refers to the dimension of geometrical objects such as 

point (dimension 0), line (dimension1), and plane (dimension 2). But we also want to refer in this 

presentation to external representations or registers (in terms of Duval 2000) used in mathematics 

for representing mathematical objects and relations or describing them, such as graphical 

representations like diagrams in paper and pencil or on a computer screen, or natural language. 

 

2. “Deconstructing” and structuring 3D objects 
2.1. Why is it difficult to count the number of faces of a polyhedron? 

Imagine a middle school or high school student faced with the task of counting the faces of a real 

solid object without the possibility of marking these faces. Suppose that it is a rhombic 

dodecahedron (Fig.1).  

 
Figure 1 - A rhombic dodecahedron1 rhombicdodecahedron.cg3 

 
1
Cabri 3D figures are manipulable from a Word document in Windows with a right click (choose Object 

Cabri3DActiveDoc-Manipulate) if a plug-in is installed on the machine. A free plug-in for manipulating the figures is 

downloadable from www.cabri.com. It is also possible to open the corresponding Cabri 3D file  by clicking on the link 

to the file (Ctrl+click) if Cabri 3D is installed on the machine. A free evaluation version is also available from the same 

site.  

https://ejmt.mathandtech.org/Contents/v2n1p3/rhombicdodecahedron.cg3
http://www.cabri.com/


The student will count faces in front of him/her, try to memorize the already counted faces and 

rotate the polyhedron to count other faces but very soon will be lost as all faces look the same. The 

situation would be completely different if the student would have first been introduced to the 

genesis of this rhombic polyhedron from a cube: on each face of the cube is added a pyramid with 

vertex the reflected image of the center of the cube with respect to this face. Or in other words, each 

of the six inner pyramids with vertex the center of the cube which build the cube is turned inside 

out (Fig.2). 

    
Figure 2 – Turning inside out a pyramid pyramidincube0.cg3 

 

When looking at the obtained polyhedron, one can recognize that two triangular faces sharing an 

edge of the cube are in the same plane (Fig.3) and seem to build a rhombus with one diagonal being 

an edge of the cube.  

 
Figure 3 – Two faces sharing an edge of the cube rhombicdodecahedronwithcube.cg3 

 

At this point, the counting of the number of the faces of the new polyhedron can be assisted by the 

structure coming from its genesis. Each of the six faces of the cube gives rise to four triangular 

faces and as each face of the polyhedron is made of two triangular faces, the number of its faces is 

6 x 4 : 2 i.e. 12. Another counting process is based on the fact that to each edge of the cube 

corresponds one face of the polyhedron this edge is diagonal of. As the cube has 12 edges, the 

polyhedron has 12 faces.  

 

This example intends to illustrate how counting the faces of a polyhedron requires going beyond 

the visual perception of the faces of the polyhedron and structuring this polyhedron. Two examples 

of possible structures were given here for the rhombic dodecahedron. This is why enumerating 

tasks are used in teaching as powerful tasks for fostering the construction of a mental structure for 

solid objects. Similar experiments with other solid objects (pyramids, prisms) carried out with 

students at the end of high school provided the same evidence (Mariotti 1992, 1996). Constructing 

a structure for solid objects requires identifying the parts of this object of same or lower dimension 

and their mutual relationships. 

 

2.2. Breaking down a geometric figure into components 

The complaint of many teachers about difficulties students encounter in “visualizing” 3D objects or 

figures, as well as the emphasis made by some curricula on the importance of learning to 

“visualize” in 3D geometry, reflect the same idea of the absence of interpretation in geometrical 

terms by students of what they see. As written by Gutiérrez (1996, p.9) visualization refers to “the 

https://ejmt.mathandtech.org/Contents/v2n1p3/pyramidincube0.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/rhombicdodecahedronwithcube.cg3


kind of reasoning activity based on the use of visual and spatial elements, either mental or physical, 

performed to solve problems or prove properties”. He considers mental images or cognitive 

representations of mathematical properties as a main element of visualization, actually shared by 

different theoretical approaches about visualization. Mental images differ from visual perception 

even if they may derive from it. For example, Kosslyn (1994, p.329) claims that images contain 

previously digested information; they are organized into units that have been previously interpreted 

whereas perception organizes the input from scratch and match it to stored representations. The 

importance of the role of mental images in mathematics is shared by constructivist approaches (as 

claimed by Presmeg in her review of research about visualization, 2006).  

  

More recently, the same claim is expressed by Duval (2005) who distinguishes between two ways 

of “seeing” a figure in 2D geometry or 3D geometry: 

- An iconic visualization bearing on the shape: a child recognizes a round shape in a disc 

or in a circle and is able to distinguish it from a squared shape; the shape of a ball is also 

easily distinguished from the shape of a cube. The criterion for recognizing the shape 

bears on the contour of the global object. Shapes must be stable for being recognized; 

- a non iconic visualization in which the figure is broken up into components or is 

transformed into another figure. 

In Duval terms, the iconic visualization of a cubic box does not consider the relationships between 

faces, edges and vertices of this box. A strong evidence of this is the well-known difficulty children 

encounter when counting the number of faces or of edges of a cube even when the cube is available 

for manipulation. As long as the children do not have structured the cube into for instance the top 

and bottom faces and lateral faces, they must have recourse to marks on the material cube in order 

to memorize the faces already counted.  

 

In a non iconic visualization, a cube can be broken down 

- into a set of polyhedrons, like three congruent pyramids with a common vertex and a 

squared base or two prisms on a triangular base (Fig.4); 

- into a set of faces: it can be considered as a prism constructed on a squared face 

- into a set of edges: four systems of three edges orthogonal to each other and sharing a 

common endpoint (points 1, 2, 3 and 4 on Fig.5); 

- into a combination mixing edges and faces: it can be structured as made of two parallel 

squared faces connected by four edges perpendicular to the faces (Fig.6). 

     
Figure 4 - Two prisms  Figure 5 - Four systems of three edges Figure 6 - Two faces connected by four edges 

 

According to the problem to be solved, one way of breaking down the cube is more appropriate 

than the other ones. This cognitive process of splitting up an object into subparts of same or lower 

dimension is the core of the non-iconic visualization and is required in any problem solving in 

geometry (Duval 2005). This process can be supported by adding some elements on the diagram 



and/or hiding other elements. The visualization of a cube as made of two prisms is more apparent 

when the common rectangle of both prisms is drawn.  

 

Although geometry requires both types of visualization, the non iconic visualization is essential for 

identifying and reasoning about geometrical properties. The non iconic visualization must be 

learned. This is not an easy task as the iconic visualization which is immediate may sometimes 

hinder the non iconic visualization. The recognition of a prism is much easier for students when the 

base is horizontal. The prisms of the deconstruction of the cube (mentioned above) usually are not 

seen by students on a diagram if their base is not in a horizontal or vertical plane (Fig.7). The iconic 

visualization when the base is not horizontal or not vertical is more focusing on the ‘corners’ of the 

prism than on its parallel edges. 

     
Figure 7 - Prisms in a non prototypical position    Figure 8 - Prisms in a prototypical position 

 

The possibility of manipulating the cube to move the prisms in a prototypical position helps 

students see the half cube as a prism (Fig.8). This manipulation allows students to eliminate the 

conflict between the iconic and the non iconic visualization. 

 

Too often the teaching of mathematics ignores that students have not yet constructed a non iconic 

visualization and does not help students be able to develop it. Fishbein (1993) developed the notion 

of figural concept to give account for this dual role of figural and conceptual in geometry. 

 

3. Graphical and textual registers 
Each representation of a mathematical object brings some aspects to the fore, whereas it hides other 

aspects of the same object and thus affects the way the object is conceived. The meaning 

constructed by the individual is not only affected by the features of the representations available but 

also by the possible ways to use them. Mathematical activity requires manipulations of and 

operations on these representations. Various systems of representation in mathematics have been 

built over time, and these systems affect how we do mathematics. Netz (1999) argues that Greek 

mathematics was both supported and limited by the available media. Kaput (2001) claims that 

fundamental representational infrastructures, such as writing systems and algebra, play a major role 

in determining what and how people think and what they are capable of doing. 

 

Learning mathematics and learning to have a mathematical activity require being able to choose the 

adequate register for the problem to be solved and possibly to move to another register. What we 

meant is that the flexibility of moving between registers is not only supporting the construction of 

the meaning of a mathematical concept but is essential when «doing» mathematics. Duval (2000, 

pp.1.63-1.65) claims that understanding a concept requires coordinating at least two registers and 

being able to move spontaneously and rapidly from one register to another one. In geometry, two 

registers are indispensable: the graphical register of diagrams and the textual register. As a 

geometrical figure cannot be entirely determined only from its diagram, a textual description 

specifying the objects and relationships determining the figure is needed (Parzysz 1988).  



 

It has often been stated that the difficulty of proving in geometry for students lies in the subtle role 

of diagrams in the elaboration of the proof. On the one hand, diagrams provide ideas about how to 

justify a statement and it would be impossible to write down the proof of a complex problem 

without a diagram (Laborde 2005). On the other hand, a proof cannot include elements coming 

from visual evidence. This subtle role of diagram is far from being used spontaneously by students. 

The role of the teacher is essential in making students more familiar with this game. 

 

We believe that new 3D geometry environments offer useful tools that can be used by the teacher 

for the development of both a non-iconic visualization and flexibility between diagrams and texts. 

This claim will be illustrated in what follows by means of Cabri 3D. 

 

4. 3D dynamic geometry environments with direct manipulation       

4.1. Amplifying the reliability of iconic visualization 

One of the problems of 3D geometry is that 3D objects can be represented only in 2D even on 

computer screen unless these objects are represented by material solid objects (such as mock-ups). 

In 2D geometry, the iconic visualization could hinder the recourse to non iconic visualization but 

the evidence given by iconic visualization is generally reliable. It is no longer the case in 3D: it is 

not possible to be sure that two lines intersect from a diagram, or that four points or more are 

coplanar. It was often observed by teachers that middle school or high school students believe that 

two lines intersect in 3D because they intersect on the diagram. 

 

The possibility of changing the point of view in 3D dynamic environments with direct manipulation 

allows the user to obtain immediate visual evidence of such phenomena, as in the following Cabri 

3D figures of two non intersecting lines (Fig.9) or of four non planar points (Fig.10). In 3D 

dynamic geometry environments, changing the point of view so that three points seem to be on a 

line provides iconic evidence whether four points are coplanar or not: if the fourth point seems to 

be outside of the line, the four points are not coplanar. 

  
Figure 9 - Two apparently intersecting lines seem no longer intersect twoapparentlycrossinglines.cg3 

   
Figure 10 - Four points from different points of view fourpointscoplanarornot.cg3 

 

In the same manner, the possibility of unfolding and folding of any variable polyhedron amplifies 

the possibilities of visual evidence that in absence of technology are obtained only at the cost of 

making a material net for each instance of solid objects. 

 

https://ejmt.mathandtech.org/Contents/v2n1p3/twoapparentlycrossinglines.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/fourpointscoplanarornot.cg3


The continuity of the move in all the above examples plays a critical role on the fact that the 

individual considers that it is always the same object (s)he is viewing. 
 

4.2. Assisting the development of non iconic visualization: the role of construction tasks 

Facing students with appropriate tasks to be solved in a 3D dynamic geometry environment may be 

the source of the development of non iconic visualization. Construction tasks seem to be well suited 

for such development as in most cases the construction of a complex object can only be done in 

breaking down the object into parts and in constructing these parts by taking into account their 

mutual relationships. Construction tasks require a cognitive process of “deconstruction” of the 

complex object to construct and coordination of the units obtained in the deconstruction process. 

More precisely, a construction task requires the following processes: 

- breaking down the object into units; 

- identifying the geometrical nature of the units: these parts may be points (dimension 0), 

segments or lines (dimension1), planes or polygons (dimension 2) or solid objects 

(dimension 3, prisms, pyramids, cubes); 

- for each unit to reconstruct, identifying its relationships with the already reconstructed units 

so that it can be determined. 

 

The novelty of 3D geometry environments is that this deconstruction is not only possible with 0 or 

1 dimensional parts like on paper and pencil, but also with 2 or 3 dimensional parts as far as the 

software environment offers tools for constructing 2D and 3D objects. Construction tasks of 3D 

objects in those environments may call thus for an analysis of 3D objects focusing on components 

of dimension 2 or 3 and may contribute to a better knowledge of space. Before the availability of 

3D geometry computer environments, construction by means of 2 or 3 dimensional parts were only 

possible with mock ups or games. 

 

The very simple example of the cube will be used to illustrate this claim. The teacher asks the 

students to get rid of the tool « Cube2» and to construct a cube from a given square in the base 

plane. The most spontaneous strategy from students is to construct the edges of the cube and not the 

faces. They do it by working in the planes of the lateral faces obtained as perpendicular planes 

containing an edge of the starting square. They construct squares in each plane by using circle. This 

dimensional deconstruction structures the cube as a net of edges and consists in coming back to 

construction of squares in planes. This is the most usual strategy for students as they are mainly 

familiar with 2D geometry. 

 

We also had experimented this task in in-service teacher education and could observe the same 

strategies based on reconstructing the cube from edges. When prompted to use faces (2 dimensional 

objects) most of teachers used planes: the cube was obtained as intersection of a set of parallel and 

perpendicular planes (Fig.11).  

 
Figure 11 – A cube as intersection of planes cubeasintersectionofplanes.cg3 

 
2 This possibility of customizing the toolbar is available in Cabri 3D v.2.1.1 

https://ejmt.mathandtech.org/Contents/v2n1p3/cubeasintersectionofplanes.cg3


 

They did not resort to transformations which are efficient construction tools available in Cabri 3D. 

For example, a lateral square can be considered as the image of the base in a rotation with axis a 

side of the square in the base plane (Fig.12). The other lateral faces can be obtained as images of 

the previous one in rotations around the vertical axis of the cube (Fig13).  

    
Figure 12 – A face rotated from the initial square  Figure 13 - Another lateral face rotated from the previous one 

 

In experimenting reconstruction tasks of a prism or of a complex object made of several prisms 

with three pairs of 10th French graders (15 to 16 year-old students) who have been just introduced 

to Cabri 3D before the experiment, Mithalal (2007) also observed that: 

- students preferred to reconstruct units by means of points instead of segments or lines 

- even if they were able to use transformations in a plane, they did not use them in space even 

if they identified them. 

 

For example, a prism (Fig.14) was given on the screen of Cabri 3D and students had to reconstruct 

an identical object with same behavior on another computer without having available in Cabri the 

prism and polyhedron tools. This prism was constructed from three directly movable points, points 

a and b in the base plane and point c on the line perpendicular at the base plane in point O (center 

of the bottom face of the prism).The three pairs did not recognize a prism or at least did not 

pronounce this word. All the pairs considered the prism as made of one bottom face, one top face 

and vertical edges in order to reconstruct it. The bottom face in the base plane was identified as a 

rhombus by all students. Two pairs of students used the symmetry with respect to point O to 

reconstruct the bottom face and used the tool central symmetry on the vertices of the rhombus and 

not on its sides. Pair 1 identified that the top face was symmetrical with respect to point c and 

reconstructed the vertices of the top face as images of the vertices of the bottom rhombus in this 

central symmetry. 

 
Figure 14 – The prism to reconstruct prism1.cg3 

 

Pair 2 was very puzzled when having to construct the top face. S1 and S2 denote here the students 

of this pair. 

https://ejmt.mathandtech.org/Contents/v2n1p3/prism1.cg3


S1: “You must have a second face, indeed at the top! But I don’t know what to tell you to do. 

Indeed I don’t manage to understand how to do.” (Il faut que t’aies une deuxième face, en fait, en 

haut! Mais je sais pas comment te faire faire. . . En fait j’arrive pas à comprendre comment faut 

faire.). 

In describing to his mate S2 the top face, student S1 explained with gestures that there were two 

identical rhombuses, the one at the bottom, the other one at the top. S2 thought that the plane of the 

top rhombus was passing through c, (probably because moving c provoked the move of the top face 

of the prism). S1 rejected this proposal saying that the top face was not at the level of point c since 

point c was in the middle of the figure (she meant in the middle of the prism). This intervention led 

S2 to identify symmetry. 

 

S2: Point c, what is it? (Le point c, c’est quoi ?) 

S1: Point c, it is the point… (Le point c c’est le point. . .) 

S2:  It is the central point of the other face, of the top face! (C’est le point central de l’autre face, de 

la face du dessus !) 

S1: No (non) 

S2:  Well, what is it? (ben c’est quoi ?) 

S1: It is in the middle of the figure (il est au milieu de la figure) 

S2: So well it is the central point of the top face (ben oui, donc c’est le point central de la face du 

dessu)s 

S1: No, it is in the middle of the figure (non, il est au milieu de la figure) 

S2: I got it, I think that I found, you said that point c is in the middle of the figure, it means that I do 

the symmetry of that point (Ah, mais alors j’ai compris ! je crois que j’ai trouvé! T’as dit que le 

point c il est au milieu de la figure, ça veut dire que je fais la symétrie de ce point là!). 

 

They constructed the reflected image O’ of point O with respect to point c but did not resort to 

symmetry to construct the images of the vertices of the bottom rhombus. They constructed the 

vertices of the top rhombus as intersection of parallel lines to lines Oa and Ob passing through O’ 

and perpendicular lines to the base plane passing through the vertices of the bottom rhombus. It 

seems that this pair first had difficulties to extend the notion of symmetry from plane to space. 

Firstly they identified with difficulty a symmetry in space although they used it without any 

problem in the base plane but the fact that this latter is horizontal may have facilitated the use of a 

symmetry. Secondly once they have identified a symmetry, they reduced its use to one point and 

did not use it for other points of the top face of the prism. They could have used symmetry in two 

different ways: either in space with respect to point c, or in the plane of the top face with respect to 

O’ but they did not. The properties prevailing over the central symmetry were parallelism and 

perpendicularity between lines. The vertical direction of lines may have reinforced the use of the 

perpendicularity. 

 

Pair 1 used other transformations in the following reconstruction tasks (Fig. 15, 16 and 17), a 

central symmetry only for points in the second task and then axial and plane symmetries for 

segments of the two last tasks as they became aware that using transformations directly on 

segments was faster than using it for points and then constructing the segments joining points. The 

repetition of the construction tasks led the students of pair 1 to be aware that it is more efficient to 

use directly a transformation on edges than on points. It confirms our assumption that tasks may 

favor the evolution of the strategies of students, and in this case the evolution of the instrumental 

genesis (see section 4.4). 



  
Figure 15 – Reconstruction task 2 prisms2.cg3  Figure 16 - Reconstruction task 3 prisms3.cg3 

 

 
Figure 17 - Reconstruction task 4  prisms4.cg3 

 

The observation of pair 2 on the other tasks confirms their difficulty of using a symmetry in space. 

They constructed the top face of the second prism (Fig.15) by using a central symmetry as this face 

was in the horizontal base plane but then resorted to the use of perpendicularity and parallelism for 

completing the construction. They constructed the vertices of the bottom face of the third prism as 

images of the vertices of the top face of the first prism through an axial symmetry, then constructed 

the reflected image of point O with respect to the center of the top face of the first prism to 

determine the height of the center of the top face of the third prism and then completed the 

construction by using parallel lines and lines perpendicular to the base plane (Fig.16). 

 

Pair 3 also used a central symmetry only in horizontal planes and on points for the construction of 

the rhombi. At the beginning pair 3 produced mainly figures by means of measures adjusted 

through dragging. As such dragging did not preserve the apparent shape of the figures, the students 

moved then to the use of central symmetry on points and the construction of parallel lines. 

 

From all these observations of students and teachers faced with construction tasks with Cabri 3D, 

some conclusions can be drawn: 

- in the analysis phase of the figure to reconstruct 

- plane figures, in particular polygons are easily identified 

https://ejmt.mathandtech.org/Contents/v2n1p3/prisms2.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/prisms3.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/prisms4.cg3


- basic properties such as parallel or orthogonal directions are identified, especially when 

directions are vertical or in an horizontal plane 

- in the reconstruction phase 

- the use of properties is preferred to the use of transformations in space which is not 

spontaneous  

- if transformations are used, they are mostly used on points and not on objects of higher 

dimension; however this can change either under the suggestion by the teacher or from the 

awareness of the tedious character of a construction made only on points. 

 

The analysis phase seems to show that the structure of a complex object is mainly done according 

to horizontal planes and vertical lines. The reconstruction phase seems to show that plane geometry 

interferes strongly in the reconstruction process. Transformations are used within planes and 

particularly horizontal planes and not extended to space. We hypothesize that plane geometry 

affects the ways of structuring 3D space. I addition to students’ difficulty of anticipating the effect 

of a transformation in space, their scarce use of transformations and in most cases dealing only with 

points may also be explained by the influence of paper and pencil geometry in which constructions 

are done by using geometric properties and in which it is not possible to obtain directly the images 

of a figure through a transformation. When faced with a new environment, students must learn how 

to use it and, beyond knowing how to use technically the tools offered by environment, they also 

must be able to develop new construction strategies based on these tools. This point will be 

developed in section 4.4. 

 

To conclude this section, we stress the potentialities of construction tasks in Cabri 3D like 

computer environments for non iconic visualization, as new ways of breaking down complex 

figures are made possible by these environments and new construction tools based on 

transformations are made possible. Feedback offered by dragging may allow students to invalidate 

some of his/her incorrect construction strategies and lead them to seek another solution. Of course, 

facing students with only one such task is not enough to foster such changes in their strategies and 

only the combination of a sequence of tasks and of teacher interventions can be the source of 

changes. 

 

4.3. The importance of available tools 

The use of a tool affects the way a subject solves problems depending on the actions made possible 

by the tool. However in the first uses of a tool, very often the schemes of utilization developed by 

the subject are not the most efficient, as seen above in the preceding section. The tool becomes an 

efficient instrument for the subject only after a process of ‘instrumental genesis’ (Rabardel 1995), 

in which the teacher can play a critical role. The teacher gives tasks for which some specific 

software tools offer efficient solving means. Even if the students solve the tasks not by making use 

of these efficient tools and by resorting to more tedious strategies, they can appreciate the power of 

the tools presented by the teacher after they attempt to solve the task. As tools in 3D geometry 

software are strongly related to mathematical properties and objects, students construct knowledge 

not only about tools but also about mathematics. 

 

Very relevant and beautiful examples of original and efficient instrumentation with Cabri 3D are 

provided by Chuan (2006)3. They come from the lecture given by Chuan at ATCM 2006 entitled 

 
3 at the address sylvester.math.nthu.edu.tw/ d2/talk-atcm2006-unmotivated/ 



“Some unmotivated Cabri 3D constructions”. “Unmotivated” was explained by Chuan as “non 

algebra, non routine, not found in Euclid, discovered accidentally, tailor made, so short, so 

beautiful, so fun”. For most all these reasons, we consider that facing students with these 

construction tasks is supporting students learning of a deeper non iconic visualization and thus a 

better knowledge of space geometry. These constructions are non routine and not found in Euclid 

because the tools they required were not available. Chuan insists on the efficiency of the 

constructions (short). This is a critical feature of problems that are able to promote learning of new 

knowledge according to the theory of didactic situations (Brousseau 1998). A new solving strategy 

is likely to be constructed by an individual when his/her routine or available strategies are tedious 

or inoperative for the problem. The beauty of the solution emerges from the conjunction of its 

efficiency and its unusual character. Let us comment two examples given by Chuan: the 

construction of the triangular cupola starting from a hexagon and the construction of the square 

orthobicupola starting from a cube. 

 

A triangular cupola is obtained from a cuboctahedron (Fig 18) cut by a plane containing six edges 

forming a hexagon (plane ABC on Fig. 18) whose center is the center of the cuboctahedron.  

 

 
Figure 18 – A cuboctahedron cuboctahedroncut.cg3 

   

 
Figure 19 – Three tetrahedra threetetrahedracupola.cg3 

 

https://ejmt.mathandtech.org/Contents/v2n1p3/cuboctahedroncut.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/threetetrahedracupola.cg3


 
Figure 20 – Construction of the cupola as convex hull triangularcupola.cg3 

 

All the vertices of the cupola are equidistant from the center of the hexagon and hence tetrahedron 

OABI is regular. The cupola can be obtained as the convex hull of three tetrahedra constructed on 

equilateral triangles OAB, OCD and OEF (Fig.19, Fig.20). 

 

This solution is based on a deconstruction of the cupola into 3D and 2D components of the figure. 

Of course a more traditional deconstruction into 2D and 1D components could be carried out. Such 

a deconstruction could be used in a strategy based on the determination of vertex I as a vertex of 

equilateral triangle OAI. The two other vertices J and K of the triangular top of the cupola can be 

obtained as images in a rotation around the axis of the cupola. This would lead to a longer 

construction. 

 

The square orthobicupola (Fig. 21) is a square cupola reflected with respect to its octagonal base. It 

can be obtained as the convex hull from five cubes. Start from a cube, rotate it around each edge of 

the top square with an angle of 45° (Fig. 22, Fig. 23). Then create the convex hull of the five cubes 

with the tool “Convex Polyhedron”. 

 
Figure 21 – A square orthobicupola squarebicupola.cg3 

 

     
Figure 22 – Bicupola step2 cuberotated.cg3 Figure 23 – Bicupola step 5  4cubesrotated.cg3 

 

https://ejmt.mathandtech.org/Contents/v2n1p3/triangularcupola.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/squarebicupola.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/cuberotated.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/4cubesrotated.cg3


What is new, is the possibility of constructing a 3D object from other 3D objects. Earlier, this 

possibility dealt only with material objects and was often reserved to jigsaw recreational activities. 

From a learning point of view, this construction possibility by means of 3D objects is interesting 

because it relates 2D and 3D objects: in the triangular cupola, for example, it requires considering 

the lateral equilateral face of the cupola as a face of a regular tetrahedron, in the orthobicupola it 

requires considering a lateral square as the face of a cube rotated from the central cube. The 

example of the square orthobicupola differs from the example of the triangular cupola in that the 

3D parts from which the convex hull is built are non disjoint and as such differs from a construction 

with material objects. 

 

The available tools of the environment affect very much the possible construction strategies. We 

have just seen how the availability of the tool providing the convex polyhedron hull of objects may 

be an efficient construction tool. Constructing a convex polyhedron requires thus identifying the 

minimal number of elements of lower dimension determining the polyhedron. 

 

There are other geometric tools which can be used for a construction. A sphere is also a tool 

offering a transfer of measure from a point in any direction. The transfer of a measure in a plane 

from a point is also possible by using a circle around an axis (Fig. 24). Transferring the length of a 

segment on a perpendicular line from one of its endpoint can be done in the same way by using a 

square (Fig.25). The transfer of angles of some regular polygons is also possible by using the tools 

regular polygons around a line or a segment (Fig.26). All these tools are based on geometric 

properties of regular polygons and of circles.  

 

   
Length transfer by means of 

Figure 24 – …a circle  Figure 25 – …a square  Figure 26- Transfer of an angle 

 

The non iconic visualization in a length transfer is called twice  

- in identifying that on the 3D figure to be constructed, two segments (elements of 

dimension 1) are congruent 

- in adding another object of dimension 2 or 3 in which two segments with the 

same relative position are also congruent. 

  

A process of going down and up in the dimensions of the objects is very much involved in the use 

of these tools. Therefore we consider that construction tasks in 3D geometry environments offering 

this kind of tools is very demanding in terms of geometric knowledge and conversely can be used 

by teachers to promote the development of non iconic visualization in 3D. 

 

Transformations offered by Cabri 3D are also tools that can be used to construct 3D complex 

objects. Identifying that one part of the object is the image of another part in a transformation is 

also a matter of non iconic visualization.  



The interface representing continuously the image in the construction process of a rotation around 

an axis when the angle is increased continuously from 0 until its target value provides iconic 

visualization simulating a real motion in space and hence supports the non iconic visualization. We 

assume that this possibility of seeing a continuous movement between an object and its image can 

be used by the teacher to provide imagery of movements in space that very often students do not 

have and to relate these movements to geometrical transformations. Students can be asked to 

simulate a triangle rotating around one of its sides, or a face of a polyhedron to rotate around one of 

its edges, or a polyhedron around an axis (Fig.27). 

 
Figure 27 – A rotating square around an edge of another square rotating%20square.cg3 

 

4.4. Complementary roles of graphical and textual registers 

Let us come back to the example of four points apparently coplanar. As said above, changing the 

point of view allows the students to augment their iconic visualization and to invalidate the fact that 

the four points are coplanar. However the reason why four points are coplanar or non coplanar can 

only be found by using theoretical knowledge. The textual description of a figure offered by Cabri 

3D describes the objects and their relationships (geometrical properties) that define this figure 

(Fig.28). 

 
 

Figure 28 – A figure and its textual description fourpointscoplanarornotwithdesc.cg3 

 

The surprise of the students discovering that four points they expected to be coplanar are not 

coplanar, can be used by the teacher to motivate students to prove why. Students often have 

https://ejmt.mathandtech.org/Contents/v2n1p3/rotating%20square.cg3
https://ejmt.mathandtech.org/Contents/v2n1p3/fourpointscoplanarornotwithdesc.cg3


difficulties in not using evidence given by the figure in their proof: it is clear that three points are in 

the same plane and the fourth one is not. The existence of the textual description can be utilized by 

the teacher: the proof of the fact that these four points are not coplanar must be based only on 

information items given by the textual description.  

The teacher can ask: Why do we know from the description that R, Q and S are in the same plane? 

Why do we know from the description that P is not in this plane? The link between the textual 

description and the figure can help students find in the description all information items about an 

object. When clicking on the object in the diagram, all the occurrences of the object in the textual 

description are highlighted and conversely when clicking on an object of the description, all the 

other occurrences of the same object are highlighted and its representation in the diagram is 

flashing. While the description provides an objective criterion for insuring that the proof is only 

based on properties used to build the figure, the interactive link between text and diagram allows 

the student to reason by using non iconic visualization coming from the diagram. It offers a way of 

overcoming the paradoxical situation which students face: they must elaborate a proof with the help 

of the diagram but are not allowed to refer to the diagram in the text of the proof.  

 

Such a proof requires to make explicit some theorems and axioms of 3D geometry. This can be 

used to make university students, in particular pre-service teachers, aware of the axiomatic system 

of geometry. Cabri II on the TI 92 was already used in this way to introduce university students to 

the axiomatic system of geometry and to do formal proofs (Perry Carrasco et al. 2006) or Italian 

high school students to construct a system of axioms (Mariotti 2000). 

 

Teachers often consider that 3D geometry is hard matter to learn. In this paper, we pointed out two 

cognitive processes contributing to the difficulty of 3D geometry: iconic visualization and non 

iconic visualization. These processes are an essential part of any geometrical activity. We attempted 

to show that tools available in new 3D dynamic geometry environments may not only assist these 

cognitive processes but enlarge their range. Since it makes accessible operations on 2D and 3D 

objects, it may extend non iconic visualization to those objects. Of course the teacher is still 

needed. One of his/her roles is to design challenging tasks requiring an extended non iconic 

visualization. Such tasks can even be fun when, for example, they consist in reproducing dynamic 

3D objects given on the screen of the computer as in Chuan’s examples.  
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